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1. Introduction 

The open sourcing of hardware design of SPARC T1 has 
enabled challenges around multi-threading and 64-bit 
hardware design concepts to be explored more freely and 
openly, and beneficial innovations be achieved. Functional 
verification of modern processors and complex ASIC designs 
is a challenging task. The time required to find the exact 
source of an error in complex designs represents a 
significant part of the verification process. Design 
development time is largely influenced by the number of 
latent defects in the design which in turn is often a function 
of the completeness of the architectural specification, and the 
complexity of its implementation. The quality of the 
verification process is reflected both in the fraction of latent 
defects that are detected (test coverage) and the mean- 
time-to-detect. These are the factors that control the cost 
and quality of designs [5]. Today, design bugs are treated 
with ad-hoc heuristic techniques that seek to avoid the 
occurrence of design bugs through software and hardware 
configuration changes. 

The test space of processor design is so huge that it is very 
difficult to completely specify it. As a result, directed testing  
(special  hand-coded  test  cases)  alone would not  be 
sufficient to find all the design defects. On the other hand, 

doing exhaustive random testing is not realistic, since it 
would require a tremendous amount of simulation resources. 
Hence a dependable number of directed testing along with 
random testing to catch the corner cases would do proper 
justice to the verification program. This work mostly tends to 
look into the direct testing aspects. 

 
Fig 1. Test Coverage 

Understanding the design micro architecture down to the RTL 
code level for injecting defects and developing new tests 
(white box approach), promises full visibility and 
controllability of internal structures and implementations of 
the design being verified. 

2. Implementation of Defect Model 
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The main approach of this paper is to develop several design 
defective models at the RTL level and target the bugs through 
directed testcases .The testcases are developed in SPARC 
assembly language based on the SPARC V9 architecture. The 
simulations are run at chip level without the reference model. 
A regression suite is developed which could be further used 
to customize new designs. 

To  develop  a  defect model, the    study focuses  on the 
Verilog RTL source code of the OpenSPARC T1 chip- 
multiprocessor, the open source version of Sun’s commercial 
UltraSPARC T1 (Niagara) chip-multiprocessor. The RTL level is 
considered to be very close to the actual hardware 
implementation. The only design phases separating the RTL 
level with the actual hardware implementation are logic 
synthesis, which generates the design’s gate-level netlist and 
place-and-route, which creates the transistor-level layout of 
the netlist. Therefore, the direct relation between the RTL level 
and the underlying implementation provides an adequate 
level of detail that allows the extraction of low-level design 
bug characteristics. 

3. Classification of Design Bugs 

Generally bugs can be classified under several categories, 
some of them being: 
 

i. Logical design  bugs: These are  caused due  to 
erroneous logic in combinational circuits. 

 
ii. Algorithmic Design Bugs: These are caused by bugs in 

algorithmic implementation of the design. These 
design bugs exhibit algorithmic deviations from the 
design specification and they usually require major 
modifications to be fixed. 

 
iii. Timing bugs: These bugs are associated with timing 

correctness of the implementation. 
 
iv. Wrong signal source. 
 
v. Wrong operator. 
 
vi. Incorrect control logic. 
 
vii. Incorrect connections Units 

 

4. Bug Implementation in execution unit 

The verilog coding styles of the processor RTL is familiarized 
and the various blocks of the EXU were identified to inject 
bugs. Since most of the design files have very large number 

of instantiations, the simulation of some design files, stating 
the bugs introduced, is done in Xilinx. 

A. Injecting bugs in the ALU unit 
 
The carry generated from the 32nd bit while adding two 64 
bit numbers is not considered, Omission of carry generated in 
the adder logic while adding two 64 bit data. Adder output is 
implemented correctly only for odd value data in register rs1 
(for data1).The least significant bit of rs1 register (for data1) is 
always stuck to one. Wrong implementation of AND & XOR 
logic resulting in erroneous  implementation of the ALU 
block. The subtract logic of the add sub unit gives wrong 
results. Erroneous logics implemented for NAND, XNOR and 
NOR operations for the ALU block. Wrong logic for 64 bit 
zero comparator. This results in incorrect logic for several 
units like 

 
Fig 2. ALU Block 

 
 
LSU, IFU which checks the address and data value. Error when 
performing logical or of consequence bits of a 32 bit data 
resulting in wrong  calculation of aluzcmp64. The sum predict 
block sets the zero condition code register for nonzero 
results. 

B. Injecting bugs in the shifter unit 
 
The left and right shifter units are cross connected, resulting 
in erroneous results. The left shifting of operand bits by 4, 8, 
and 16 bits ,results in filling by ‘1’ instead of zero filling. 

The SPARC V9 architecture and the assembly language are 
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familiarized to write test cases. Since the design is a white 
box, several directed test cases are developed to target the 
bugs. 

 

Fig 3. Shifter Block 

Long simulations are conducted by targeting the bug injected 
models with individual testcases at chip level and the results 
are monitored through log files. Simultaneously the tests are 
run on the clean model to check the reliability of the tests. 
The right test cases that hit the bug give a bad trap (which 
indicates error in test results), while the remaining gives a 
good trap. All the test cases hit good trap for the clean 
model. The verification process is improved by creating 
diaglists to run several testcases together and hence a 
regression suite is created with the testscases that are 
developed. 

 
 

Fig 4. Simulation flow graph 
 
Midas is the diag assembler for SPARC and its main function 
is to build and link the diag. This calls the assembler to create 
an executable from the assembly language source of the test. 
The resulting executable contains some simple reset 

code, trap tables, as well as the main diagnostic code. The 
sims program then takes this executable and creates a 
memory image file from it. All the code and data sections 
from the executable are placed into the memory image file. 
Then the required page table entries and translation storage 

buffers for virtual memory are added. 

It is observed that several testcases could hit the bad trap 
when run on the buggy model, while the test vectors that 

could not catch the bug ended in good trap. Several diags are 
run simultaneously to create a regression suite. The status.log 
report gives the diag status. The log files shows exactly how 
the diag is disassembled including the reset, traps and main 

section of the program.

 

Fig 5. Status.log of diags run in regression 
 
5. Simulation Timing Reports 

It is observed that each testcase took different number of 
cycles to hit the bug. At times several testcases are unable to 
hit the bug within the stipulated no. of cycles and results in 
timed out errors. The maximum cycles are hit before the 
simulation enters the main section of the testcases. This is 
probably due to some looping at the boot code level. The 
testcases targeting complex blocks like div unit take more cpu 
cycles. Also several testcases are run with the dump on option 
to record the test inputs hitting the bug. The dumping is 
halted when the maximum cycles are hit. All the testcases 
hitting the EXU are set to maximum of 30,000 cycles. 

Table 1. Timing Report for Various Diags 
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6. Coverage Reports 

Coverage metrics are widely used to automatically record 
information and analyze it to determine whether a particular 
test verified a specific feature. Coverage metrics can quantify 
the verification plan accomplished so far and can pinpoint 
areas that require additional verification effort. 

The coverage metrics of the various test cases are monitored. 
It is found that the test case targeting the EXU for a particular 
block gives maximum coverage for its corresponding module. 
For example, shift.s gives more than 90% coverage for the 
shift block but very poor coverage  for the rest of the blocks. 
Cumulative targeting of all test cases is conducted to improve 
overall coverage and it is observed that all the blocks could 
be covered with very high percentage. Also the overall 
coverage of EXU could be improved. 

7. Coverage results 

Code coverage provides information on how thoroughly a 
design has been exercised during simulation. They are used to 
evaluate the effectiveness of directed tests and to guide the 
generation of new tests. The shift.s testcase covering the EXU 
block is shown below. The green block indicates high 
coverage percentage, red indicates the lowest percentage and 
yellow indicates average coverage. Blocks which are not 
touched by the diag are left blank. 

 
 
 
 
 

 
Fig 4.6: Coverage results of shift.s targeting the EXU block 

The merged coverage results are shown below. It is observed 
that all the blocks hit maximum coverage percentage. 

 

Fig 4.7: Merged Coverage results of diags targeting the EXU 
block 

8. Conclusion and Future Scope 

Verification is a process that is never truly complete. We 
understand that designs are error-prone and so, the objective 
of verification is to detect the errors. Yet, no one can really 
prove that the design is error-free. Verification can only show 
the presence of errors, not their absence. The difficulty of the 
design verification problem is compounded by the current 
processor design flow. The white box approach gives a better 
understanding and easiness for the verification engineers to 
develop testcases. In most design cycles, a design’s 
verifiability is not explicitly considered at an early stage, when 
decisions are most influential, because that initial focus is 
exclusively on improving the design on more traditional 
metrics like performance, power, and area. It is thus possible 
for the resulting design to be very difficult to verify in the end, 
specifically because its verifiability was not given higher 
priority in the beginning. Hence verifiability should be viewed 
as a critical design constraint, together with other established 
metrics, like performance and power, from the initial stages of 
design. This approach will make designs more easily and 
thoroughly verifiable, which would both decrease the 
resources invested in the verification step and lead to more 
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robust designs. 

The  future  scope  of  the  project  includes  optimizing  the 
hardware for 4 threads, 16 TLBs, with SPU unit to download 
on FPGA. Targeting bugs on the LSU and trap units can give a 
deeper insight of the processor memory and troubleshooting 
mechanism. Several on board applications can be run by 
building large systems by linking many CPUs on FPGA boards. 
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