
International Journal of Innovative Trends in Engineering (IJITE)
Volume-02, Number-01, 2015

Design Defect Diagnosis in SPARC T1 Processor

BrijMohan1, Lekha Pankaj2, K, Nutan Hegde3
1,2,3Assistant Professor, Dept. of EC,

1GEC Kozhikode,
2AWHEC Calicut

3KMCTCEW Calicut

1. Introduction

The open sourcing of hardware design of SPARC T1 has
enabled challenges around multi-threading and 64-bit
hardware design concepts to be explored more freely and
openly, and beneficial innovations be achieved. Functional
verification of modern processors and complex ASIC designs
is a challenging task. The time required to find the exact
source of an error in complex designs represents a
significant part of the verification process. Design
development time is largely influenced by the number of
latent defects in the design which in turn is often a function
of the completeness of the architectural specification, and the
complexity of its implementation. The quality of the
verification process is reflected both in the fraction of latent
defects that are detected (test coverage) and the mean-
time-to-detect. These are the factors that control the cost
and quality of designs [5]. Today, design bugs are treated
with ad-hoc heuristic techniques that seek to avoid the
occurrence of design bugs through software and hardware
configuration changes.

The test space of processor design is so huge that it is very
difficult to completely specify it. As a result, directed testing
(special hand-coded test cases) alone would not be
sufficient to find all the design defects. On the other hand,

doing exhaustive random testing is not realistic, since it
would require a tremendous amount of simulation resources.
Hence a dependable number of directed testing along with
random testing to catch the corner cases would do proper
justice to the verification program. This work mostly tends to
look into the direct testing aspects.

Fig 1. Test Coverage

Understanding the design micro architecture down to the RTL
code level for injecting defects and developing new tests
(white box approach), promises full visibility and
controllability of internal structures and implementations of
the design being verified.

2. Implementation of Defect Model

Abstract

Here Verification has indisputably become the primary challenge today with recent industry studies estimating that half of
all chips manufactured require one or more re-spins. This work addresses the problem of verifying the correctness of pre-
silicon models of a multithreaded multicored processor (SPARC T1) and aims in replicating an industry level problem and
solution approach for verifying a real processor design (state-of-the-art). The approach in classifying general type of bugs
that can get into the EXU unit of SPARC T1 processor design and introducing design defects in the RTL. Several defective
models were developed covering the entire functional blocks in the EXU and several coverage models for the test cases
run on the defective design were also developed. This work tends to look back at the fact that verification is a process that
is never truly complete. We understand that designs are error-prone and so, the objective of verification is to detect the
errors. Yet, no one can really prove that the design is error-free.

Keywords

SPARC T1 Processor, Multicore, verification

 21

International Journal of Innovative Trends in Engineering (IJITE)
Volume-02, Number-01, 2015

The main approach of this paper is to develop several design
defective models at the RTL level and target the bugs through
directed testcases .The testcases are developed in SPARC
assembly language based on the SPARC V9 architecture. The
simulations are run at chip level without the reference model.
A regression suite is developed which could be further used
to customize new designs.

To develop a defect model, the study focuses on the
Verilog RTL source code of the OpenSPARC T1 chip-
multiprocessor, the open source version of Sun’s commercial
UltraSPARC T1 (Niagara) chip-multiprocessor. The RTL level is
considered to be very close to the actual hardware
implementation. The only design phases separating the RTL
level with the actual hardware implementation are logic
synthesis, which generates the design’s gate-level netlist and
place-and-route, which creates the transistor-level layout of
the netlist. Therefore, the direct relation between the RTL level
and the underlying implementation provides an adequate
level of detail that allows the extraction of low-level design
bug characteristics.

3. Classification of Design Bugs

Generally bugs can be classified under several categories,
some of them being:

i. Logical design bugs: These are caused due to
erroneous logic in combinational circuits.

ii. Algorithmic Design Bugs: These are caused by bugs in

algorithmic implementation of the design. These
design bugs exhibit algorithmic deviations from the
design specification and they usually require major
modifications to be fixed.

iii. Timing bugs: These bugs are associated with timing

correctness of the implementation.

iv. Wrong signal source.

v. Wrong operator.

vi. Incorrect control logic.

vii. Incorrect connections Units

4. Bug Implementation in execution unit

The verilog coding styles of the processor RTL is familiarized
and the various blocks of the EXU were identified to inject
bugs. Since most of the design files have very large number

of instantiations, the simulation of some design files, stating
the bugs introduced, is done in Xilinx.

A. Injecting bugs in the ALU unit

The carry generated from the 32nd bit while adding two 64
bit numbers is not considered, Omission of carry generated in
the adder logic while adding two 64 bit data. Adder output is
implemented correctly only for odd value data in register rs1
(for data1).The least significant bit of rs1 register (for data1) is
always stuck to one. Wrong implementation of AND & XOR
logic resulting in erroneous implementation of the ALU
block. The subtract logic of the add sub unit gives wrong
results. Erroneous logics implemented for NAND, XNOR and
NOR operations for the ALU block. Wrong logic for 64 bit
zero comparator. This results in incorrect logic for several
units like

Fig 2. ALU Block

LSU, IFU which checks the address and data value. Error when
performing logical or of consequence bits of a 32 bit data
resulting in wrong calculation of aluzcmp64. The sum predict
block sets the zero condition code register for nonzero
results.

B. Injecting bugs in the shifter unit

The left and right shifter units are cross connected, resulting
in erroneous results. The left shifting of operand bits by 4, 8,
and 16 bits ,results in filling by ‘1’ instead of zero filling.

The SPARC V9 architecture and the assembly language are

 22

International Journal of Innovative Trends in Engineering (IJITE)
Volume-02, Number-01, 2015

familiarized to write test cases. Since the design is a white
box, several directed test cases are developed to target the
bugs.

Fig 3. Shifter Block

Long simulations are conducted by targeting the bug injected
models with individual testcases at chip level and the results
are monitored through log files. Simultaneously the tests are
run on the clean model to check the reliability of the tests.
The right test cases that hit the bug give a bad trap (which
indicates error in test results), while the remaining gives a
good trap. All the test cases hit good trap for the clean
model. The verification process is improved by creating
diaglists to run several testcases together and hence a
regression suite is created with the testscases that are
developed.

Fig 4. Simulation flow graph

Midas is the diag assembler for SPARC and its main function
is to build and link the diag. This calls the assembler to create
an executable from the assembly language source of the test.
The resulting executable contains some simple reset

code, trap tables, as well as the main diagnostic code. The
sims program then takes this executable and creates a
memory image file from it. All the code and data sections
from the executable are placed into the memory image file.
Then the required page table entries and translation storage

buffers for virtual memory are added.

It is observed that several testcases could hit the bad trap
when run on the buggy model, while the test vectors that

could not catch the bug ended in good trap. Several diags are
run simultaneously to create a regression suite. The status.log
report gives the diag status. The log files shows exactly how
the diag is disassembled including the reset, traps and main

section of the program.

Fig 5. Status.log of diags run in regression

5. Simulation Timing Reports

It is observed that each testcase took different number of
cycles to hit the bug. At times several testcases are unable to
hit the bug within the stipulated no. of cycles and results in
timed out errors. The maximum cycles are hit before the
simulation enters the main section of the testcases. This is
probably due to some looping at the boot code level. The
testcases targeting complex blocks like div unit take more cpu
cycles. Also several testcases are run with the dump on option
to record the test inputs hitting the bug. The dumping is
halted when the maximum cycles are hit. All the testcases
hitting the EXU are set to maximum of 30,000 cycles.

Table 1. Timing Report for Various Diags

 23

International Journal of Innovative Trends in Engineering (IJITE)
Volume-02, Number-01, 2015

6. Coverage Reports

Coverage metrics are widely used to automatically record
information and analyze it to determine whether a particular
test verified a specific feature. Coverage metrics can quantify
the verification plan accomplished so far and can pinpoint
areas that require additional verification effort.

The coverage metrics of the various test cases are monitored.
It is found that the test case targeting the EXU for a particular
block gives maximum coverage for its corresponding module.
For example, shift.s gives more than 90% coverage for the
shift block but very poor coverage for the rest of the blocks.
Cumulative targeting of all test cases is conducted to improve
overall coverage and it is observed that all the blocks could
be covered with very high percentage. Also the overall
coverage of EXU could be improved.

7. Coverage results

Code coverage provides information on how thoroughly a
design has been exercised during simulation. They are used to
evaluate the effectiveness of directed tests and to guide the
generation of new tests. The shift.s testcase covering the EXU
block is shown below. The green block indicates high
coverage percentage, red indicates the lowest percentage and
yellow indicates average coverage. Blocks which are not
touched by the diag are left blank.

Fig 4.6: Coverage results of shift.s targeting the EXU block

The merged coverage results are shown below. It is observed
that all the blocks hit maximum coverage percentage.

Fig 4.7: Merged Coverage results of diags targeting the EXU
block

8. Conclusion and Future Scope

Verification is a process that is never truly complete. We
understand that designs are error-prone and so, the objective
of verification is to detect the errors. Yet, no one can really
prove that the design is error-free. Verification can only show
the presence of errors, not their absence. The difficulty of the
design verification problem is compounded by the current
processor design flow. The white box approach gives a better
understanding and easiness for the verification engineers to
develop testcases. In most design cycles, a design’s
verifiability is not explicitly considered at an early stage, when
decisions are most influential, because that initial focus is
exclusively on improving the design on more traditional
metrics like performance, power, and area. It is thus possible
for the resulting design to be very difficult to verify in the end,
specifically because its verifiability was not given higher
priority in the beginning. Hence verifiability should be viewed
as a critical design constraint, together with other established
metrics, like performance and power, from the initial stages of
design. This approach will make designs more easily and
thoroughly verifiable, which would both decrease the
resources invested in the verification step and lead to more

 24

International Journal of Innovative Trends in Engineering (IJITE)
Volume-02, Number-01, 2015

robust designs.

The future scope of the project includes optimizing the
hardware for 4 threads, 16 TLBs, with SPU unit to download
on FPGA. Targeting bugs on the LSU and trap units can give a
deeper insight of the processor memory and troubleshooting
mechanism. Several on board applications can be run by
building large systems by linking many CPUs on FPGA boards.

References

[1] David A.Patterson and John L.Hennessy “Computer Organization
and architecture”,Third edition, The Morgan Kaufmann Series
in Computerarchitecture and Design, 2008.

[2] Samir Palnitkar, “Verilog HDL-A guide to Digital Design and
Synthesis”, First Edition, Pearson Education Asia, ISBN 81-7808-
489-9, 2001.

[3] David L.Weaver, “OpenSPARC Internals, Sun Microsystems, First
Edition, ISBN 978-0-557-01974-8, 2008.

[4] Darryl Gove “Solaris Application Programming”, Prentice Hall,
First Edition, ISBN 978-0-13-813455-6, 2008.

[5] Babu Turumella, et al. “Design Verification of a Super-
scalar RlSC Processor” Twenty-Fifth International Symposium
on Fault -Tolerant Computing, p.0472, IEEE, 1995

[6] Sangeetha Sudhakrishnan, Liying Su, and Jose Renau, Dept.
of Computer Engineering,University of California.“Processor
Verification with hwBugHunt”, 9th International Symposium
on Quality Electronic Design, IEEE 2008.

[7] Kypros Constantinides, Onur Mutlu, Todd Austin, “Software
based Online Design Bug Detection: RTL Analysis, Flexible
Mechanisms, and Evaluation, Evaluation”, Proceedings of the
40th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-40), December 2007.

[8] D. Van Campenhout, et.al. “High-Level Design Verification of
Microprocessors via Error Modeling” ACM Transactions on
Design Automation of Electronic Systems, Vol. 3, No. 4, Pages
581–599, October 1998.

[9] Jacob A. Abraham, Pradip Bose, Depts. of ECE and CS,
University of Texas,Austin. “Performance and Functional

Verification of Microprocessors”, VLSI Design, Thirteenth
International Conference, Volume, Issue, Page(s):58 – 63,
2000.

[10] S. Mehta, et al. “Verification of the UltraSPARC
Microprocessor” 40th IEEE Computer Society International
Conference (COMPCON'95) p. 452, 1995.

[11] P. J. Tan, et. al. “Testing of UltraSPARC T1 Microprocessor and
its challenges” IEEE International Test Conference, Pages 1-
10, 2006 .

[12] OpenSPARC™ T1 Microarchitecture Specification “ Copyright
© 2006 Sun Microsystems, Inc.

[13] “OpenSPARC™ T1 Processor Design and Verification User’s
Guide” Copyright 2008, Sun Microsystems, Inc.

[14] David L. Weaver and Tom Germond “The SPARC Architecture
Manual”, Version 9. SPARC International, Inc. Santa Clara,
California.

[15] OpenSPARC™ T1 Processor Datasheet Copyright 2006, Sun
Microsystems, Inc.

[16] “UltraSPARC Processor Emulation Verification: Getting HW/SW
right the first time “DesignCon 2007. Jai Kumar, Sun
Microsystems.

[17] Ana Sonia Leon,et.al. “A Power-Efficient High-Throughput 32-
Thread SPARC Processor”, IEEE Journal Of Solid-State Circuits,
Vol. 42, No. 1, January 2007.

[18] Shrenik Mehta, David Weaver, Jhy-Chun Wang, Ashley
Saulsbury, Partha Tirumalai, Raj Prakash “Innovating with
OpenSPARC” ASPLOS XII 2006 San Jose, CA Oct. 21, 2006.

[19] “OpenSPARCT1 FPGA Implementation” Microelectronics
group, Sun Microsystems inc.

[20] The basics of constructing FPGA by Gina R. Smith, CEO,
Owner Brown-Smith Research and Development Laboratory
Inc.

[21] VCS® / VCS® MX Coverage Metrics User Guide by
Synopsys.

[22] VirSim User Guide by SynopsisVirtex-5 FPGA User Guide,
www.xilinx.com.

[23] www.opensparc.net

Author's Profile

Brijmohan .K has received his Masters degree in Biomedical Instrumentation in the year 2008 from Indian Institute of Technology, Bombay.
At present he is working as an Assistant Professor at Government Engineering College, Kozhikode. His areas of interests are Power
Electronics, Biomedical Engineering, Embedded Systems and Process Control Instrumentation.

Lekha Pankaj has received her Bachelor of Engineering degree in Electronics and Communication Engineering from MES College of
Engineering, Kuttipuram in the year 1998. She has completed her M.Tech with the specialization of Electronic Design and Technology in
National Institute of Technology, Calicut. At present she is working as Associate Professor in AWH Engineering College, Calicut. Her area of
interest includes Embedded systems, Testing and Verification, Wireless Mobile Communication, Microprocessors and Microcontrollers.

Nutan Hegde She has completed her M.Tech with the specialization of Electronic Design and Technology in National Institute of
Technology, Calicut. At present she is working as Assistant Professor in KMCT College of Engineering for Women, Calicut. Her area of
interest includes Embedded systems, Control Systems, Digital System Design.

 25

http://www.xilinx.com/
http://www.opensparc.net/

	1. Introduction
	2. Implementation of Defect Model
	3. Classification of Design Bugs
	4. Bug Implementation in execution unit
	Injecting bugs in the ALU unit
	Injecting bugs in the shifter unit
	5. Simulation Timing Reports
	6. Coverage Reports
	7. Coverage results
	8. Conclusion and Future Scope
	References

